Abstract

The aim of this paper is to highlight the unique capabilities of electron backscattered diffraction-assisted trace analysis during in situ SEM mechanical testing of metals in order to get a better understanding of plasticity at the microscale. The technique allows for the direct observation of different deformation mechanisms, such as slip and twinning activity, at the microscale. Moreover, and contrary to other methods, it can provide statistically sound evidence of the role of the local microstructure, such as the local texture and grain boundary network, on the activation of the different deformation modes. The power of the technique is demonstrated by reviewing recent work that has been key to solving several remaining controversies regarding the role of grain size, strain rate and temperature on the plasticity of Mg polycrystals. In particular, it was found that, with decreasing grain size, at room temperature, a clear transition from non-basal- to basal-slip-dominated flow takes place under tension and a transition from twinning to basal slip takes place under compression. On the other hand, a similar transition from twinning to basal slip takes place with increasing temperature and decreasing strain rate. The emergence of basal slip as a dominant mechanism is shown to be due to increasing levels of connectivity between favorably oriented grains, which facilitate slip transfer across grain boundaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call