Abstract

The evolution of microstructure and grain boundaries were investigated in coarse-grained Ni–48Al intermetallics during plastic deformation at 1075 °C with the initial strain rate of 1.5 × 10−3 s−1 using electron backscatter diffraction (EBSD) technique. Before deformation, most grain boundaries were high-angled (HAGBs), with several particular angles being predominant. During initial deformation, low-angle grain boundaries (LAGBs) with misorientation less than 5° began to evolve. The misorientation of the newly-formed LAGBs increased with the increase of deformation, meanwhile, grain boundaries with misorientations between 6 and 15° were gradually observed, and finally transformed into HAGBs (misorientation angle > 15°). There appeared a steady state transition from the formation of new LAGBs to the transformation into high-angle grain boundaries. As a result, the grain size was refined continuously with the deformation strain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.