Abstract

Ebola virus (EBOV) causes severe systemic disease in humans and non-human primates characterized by high levels of viremia and virus titers in peripheral organs. The natural portals of virus entry are the mucosal surfaces and the skin where macrophages and dendritic cells (DCs) are primary EBOV targets. Due to the migratory properties of DCs, EBOV infection of these cells has been proposed as a necessary step for virus dissemination via draining lymph nodes and blood. Here we utilize chimeric mice with competent hematopoietic-driven immunity, to show that EBOV primarily infects CD11b+ DCs in non-lymphoid and lymphoid tissues, but spares the main cross-presenting CD103+ DC subset. Furthermore, depletion of CD8 and CD4 T cells resulted in loss of early control of virus replication, viremia and fatal Ebola virus disease (EVD). Thus, our findings point out at T cell function as a key determinant of EVD progress and outcome.

Highlights

  • Flt[3] but are morphologically and functionally distinct

  • Our results indicated that loss of IFN-I responsiveness in the hematopoietic compartment resulted in virus dissemination suggesting a putative correlation between infection of IFN-deficient cells and virus spread in our model

  • Previous research has shown that EBOV infects DCs and macrophages derived in vitro from hematopoietic progenitors which was consistent with early studies showing the presence of EBOV virions in dendritic-like cells in tissue sections[3,4,5,6]

Read more

Summary

Introduction

Inflammatory DCs are derived from activated monocytes that infiltrate tissues during inflammation or infection[11]. Previous in vitro experiments of EBOV infection of monocyte-derived DCs do not reflect the variety of DC subsets in living organisms. It is not known whether EBOV is capable of infecting all DC subsets in vivo. EBOV productively infected resident macrophages and CD11b+ DCs in peripheral tissues and draining lymph nodes. Our results identified infected CD11b+ DCs as putative viral vessels and underscored a key role of T cells as controllers of EBOV infection at the initial points of virus entry

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.