Abstract

We focus on applications where a remote client needs to visualize or process a complex, manifold triangle mesh, M, but only in a relatively small, user controlled, Region of Interest (RoI) at a time. The client first downloads a coarse base mesh, pre-computed on the server via a series of simplification passes on M, one per Level of Detail (LoD), each pass identifying an independent set of triangles, collapsing them, and, for each collapse, storing, in a Vertex Expansion Record (VER), the information needed to reverse the collapse. On each client initiated RoI modification request, the server pushes to the client a selected subset of these VERs, which, when decoded and applied to refine the mesh locally, ensure that the portion in the RoI is always at full resolution. The eBits approach proposed here offers state of the art compression ratios (using less than 2.5 bits per new full resolution RoI triangle when the RoI has more than 2000 vertices to transmit the connectivity for the selective refinements) and fine-grain control (allowing the user to adjust the RoI by small increments). The effectiveness of eBits results from several novel ideas and novel variations of previous solutions. We represent the VERs using persistent labels so that they can be applied in different orders within a given LoD. The server maintains a shadow copy of the client’s mesh. To avoid sending IDs identifying which vertices should be expanded, we either transmit, for each new vertex, a compact encoding of its death tag ​–the LoD at which it will be expanded if it lies in the RoI–or transmit vertex masks for the RoI and its neighboring vertices. We also propose a three-step simplification that reduces the overall transmission cost by increasing both the simplification effectiveness and the regularity of the valences in the resulting meshes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.