Abstract

Optical coherence tomography (OCT) image processing can provide information about the uterine cavity structure, such as endometrial surface roughness, which is important for the diagnosis of uterine cavity lesions. The accurate segmentation of uterine cavity OCT images is a key step of OCT image processing. We proposed an EA-UNet-based image segmentation model that uses a U-Net network structure with a multi-scale attention mechanism to improve the segmentation accuracy of uterine cavity OCT images. The E(ECA-C) module introduces a convolutional layer combined with the ECA attention mechanism instead of max pool, reduces the loss of feature information, enables the model to focus on features in the region to be segmented, and suppresses irrelevant features to enhance the network’s feature-extraction capability and learning potential. We also introduce the A (Attention Gates) module to improve the model’s segmentation accuracy by using global contextual information. Our experimental results show that the proposed EA-UNet can enhance the model’s feature-extraction ability; furthermore, its MIoU, Sensitivity, and Specificity indexes are 0.9379, 0.9457, and 0.9908, respectively, indicating that the model can effectively improve uterine cavity OCT image segmentation and has better segmentation performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call