Abstract
This work presents EAT (Environment Agnostic Traversability for Reactive Navigation) a novel framework for traversability estimation in indoor, outdoor, subterranean (SubT) and other unstructured environments. The architecture provides updates on traversable regions online during the mission, adapts to varying environments, while being robust to noisy semantic image segmentation. The proposed framework considers terrain prioritization based on a novel decay exponential function to fuse the semantic information and geometric features extracted from RGB-D images to obtain the traversability of the scene. Moreover, EAT introduces an obstacle inflation mechanism on the traversability image, based on mean-window weighting module, allowing to adapt the proximity to untraversable regions. The overall architecture uses two LRASPP MobileNet V3 large Convolutional Neural Networks (CNN) for semantic segmentation over RGB images, where the first one classifies the terrain types and the second one classifies see-through obstacles in the scene. Additionally, the geometric features profile the underlying surface properties of the local scene, extracting normals from depth images. The proposed scheme was integrated with a control architecture in reactive navigation scenarios and was experimentally validated in indoor and outdoor environments as well as in subterranean environments with a Pioneer 3AT mobile robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.