Abstract

Aliphatic γ-chloro-α-amino acids incorporated in place of their canonical analogues through cell-free protein synthesis act as heat-labile linkers, offering a useful strategy for the straightforward production of target peptides as fusion proteins, from which the targets are readily released. Until now, the natural abundance of aliphatic amino acids in peptides has limited the scope of the method, as it leads to undesired cleavage sites in synthesized products, but here the authors report the development of a new cleavable chloro amino acid that incorporates in place of the relatively rare amino acid methionine, thus greatly expanding the scope of producible targets. This new strategy is employed for simplified peptide synthesis with a methionine-free fusion partner, allowing single-site incorporation of the cleavable linker for clean release and easy purification of the target peptide. Its utility is demonstrated through the straightforward preparation of two peptides reported to be challenging targets and not accessible through standard solid-phase chemical methodologies, as well as analogues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.