Abstract

Nanoporous Ge/Cu3Ge composite is fabricated simply through selective dealloying of GeCuAl precursor alloy in dilute alkaline solution. The as-made Ge/Cu3Ge is characterized by three dimensional (3D) bicontinuous network nanostructure which comprises of substantial nanoscale pore voids and ligaments. Owing to the 3D porous architecture and the introduction of well-conductive Cu3Ge, the lithium storage performances of Ge are dramatically enhanced in terms of higher cycling stability and superior rate performance. Nanoporous Ge/Cu3Ge anode delivers steady capacities above 1000 mA h g−1 upon cycling for 70 loops at 400 mA g−1. In particular, after 300 cycles at the high rate of 3200 mA g−1 the capacity retention for Ge/Cu3Ge is able to reach a maximum of 99.3%. On the contrary, the pure nanoporous Ge encounters severe capacity decay. In view of the outstanding energy storage performances and easy preparation, nanoporous Ge/Cu3Ge exhibits great application potential as an advanced anode in lithium storage related technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.