Abstract

IgA antibodies are key immune effectors against invading pathogens but also possess essential immunoregulatory functions. Detecting and quantifying human IgA+ B-cell subsets and secreted IgA molecules is needed for investigating the protective, modulatory and pathophysiologic roles of IgAs. Here, we produced a recombinant tagged trimeric form of the streptococcal IgA-binding peptide (SAP) by transient transfection-based eukaryotic expression system. The trimeric SAP (tSAP) probe had a higher production yield and apparent binding affinity to human IgA1 and IgA2 immunoglobulins when compared to the dimeric SAP molecule classically used to purify IgAs. tSAP bound both monomeric and dimeric IgAs, and allowed immunoblot detection and ELISA quantification of serum IgA antibodies in humans and non-human primates. Fluorescently labeled tSAP also permitted an accurate quantification of circulating human blood IgA-expressing memory B cells by flow-cytometric analyses. Thus, the easy-to-produce high affinity recombinant tSAP probe we developed is a versatile and valuable tool to quantify secreted and membrane-bound human but also primate IgA immunoglobulins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call