Abstract

In this paper, the packaging-induced stresses are theoretically calculated by modeling multilayered structures for different packaging structures. We report a method to measure the packaging-induced stress of a laser diode array (LDA) by comparing the emission wavelength of the single emitter located in the middle of a laser bar before and after packaging. The wavelength is tested under a low duty cycle (50μs/10Hz, DC 0.05%) to eliminate the thermal effect to wavelength shifting. Experimental calculation results for the packaging-induced stress of LDAs are in good agreement with the theoretical calculations and simulation results. For a GaAs laser bar, we find the packaging stresses are compression stresses, which make the emission wavelength blue-shift in terms of 1.09×10-2 nm/MPa. We propose a mapping of packaging-induced stress distribution in laser bars on a microscopic scale by considering the emission spectra of each emitter in a laser bar. Compared to single-emitter resolved photo-current or micro-photoluminescence measurements, as proposed by other authors, we offer a much easier tool to test and map the distribution of packaging-induced stress in laser bars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.