Abstract

A new chaos communication system based on reverse-time chaotic oscillator (RTCO) is proposed in this study. In the system, driven by bipolar sequence, RTCO can directly generate chaotic wave signals that can encode arbitrary binary information, which is much easier than that of the existing chaotic communication scheme in that needs the initial condition estimation. Then the analytical expression of matched filter for the basis function of RTCO is derived. The proposed matched filter is capable of decreasing the effect of noise in the channel. Next, the binary information can be obtained by detecting the summation of multi-sampling during the symbol period through a setting threshold over additive white Gaussian noise (AWGN) channel, which further decreases the influence of noise in decoding procedure. In addition, the binary information can also be obtained over the Rayleigh channel, and its bit error rate (BER) expression is derived. Finally, the feasibility and the validity of the proposed system are given with numerical simulations. It is shown that in the proposed communication system, the encoded chaotic signal is generated with a much simpler method. Furthermore, the BER is lower than that in over AWGN channel, and the performance of the proposed system over Rayleigh channel is better than that of differential-chaos-shift-keying.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.