Abstract

Brain tissue plays a significant role in both cognitive and psychomotor behavior of humans. However, their interaction with radiation emanating from hand held mobile devices is still not fully understood. This research was aimed at investigating radiation absorption in brain tissue. Bovine brain tissues ranging from lesser than 1 year to greater than 10 years of age were bought from a specialty store (Sigma-Aldrich). The tissues were used within 72 h of extraction for ex vivo brain experiments. The brain tissue was stored at 6°C and then 16°C for 24 h in the MRI room to reach thermal equilibrium before any experiments were undertaken. The averages for the dielectric constant were measured from 1 - 4 GHz using open ended coaxial probe (OECP) (85,070E; Agilent Technologies). The results obtained for the dielectric properties were then used as raw data in the numerical computation and simulation of the radiation absorption by the brain tissues for both adolescent and adults bovine brain tissue using finite element method (FEM). The measured dielectric constants varied for the different brain tissue from 54.39 to 39.29. Analysis showed that adolescents tissue absorbed more radiation than adults from mobile phoneradiation which is due to the higher dielectric property of adolescent brain tissue. The results obtained can be applied to human brain tissue since bovine shares the same compositional properties with humans.

Highlights

  • Current usage of mobile telephones has plunged the industry into critical thinking of how to curb the menace of electromagnetic interference (EMI) pollution arising from the ever growing number of the telecommunication users via mobile telephones, local area networks, wide area networks and radar systems [1]

  • Careful observation and computation showed that the average values for the dielectric constant are 54.39, 48.14, 44.62 and 39.21 for 10 yrs old bovine brain tissues, respectively

  • Further analysis clearly shows that, the tissues of the young bovine possess higher dielectric constant at frequency of 2.4 GHz which is mostly associated with all Wi-Fi (Mobile phones)

Read more

Summary

Introduction

Current usage of mobile telephones has plunged the industry into critical thinking of how to curb the menace of electromagnetic interference (EMI) pollution arising from the ever growing number of the telecommunication users via mobile telephones, local area networks, wide area networks and radar systems [1]. Electromagnetic fields are part of our daily life which includes, mobile phones, radio, Wi-Fi, etc. This research work is focused primarily on mobile telephony. The waves associated with mobile phones are numerous and vary depending on the platform of operation such as Wi-Fi, Bluetooth, GSM antennas, 2G, UMTS or 3G, power grids. All the mentioned radiations are possible potentials to high health hazards. This research determines radiation absorption by brain tissue from brain tissue measurements in accordance with institutional and regulatory requirements

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call