Abstract

Induced pluripotent stem cells (iPSCs) may develop into any form of cell and are being intensively investigated. The influence on iPSCs of nanostructures generated using two-dimensional colloidal arrays was examined in this study. Colloidal arrays were formed using the following procedure. First, core–shell colloids were adsorbed onto a glass substrate using a layer-by-layer method. Second, the colloids were immobilized via thermal fusion. Third, the surface of the colloids was modified by plasma treatment. By adjusting the number density of colloids, cultured iPSCs were easily detached from the substrate without manual cell scraping. In addition to planar culture, cell aggregation of iPSCs attached to the substrate was achieved by combining hydrophilic surface patterning on the colloidal array. Multilayered cell aggregates with approximately four layers were able be cultured. These findings imply that colloidal arrays might be an effective tool for controlling the strength of cell adhesion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call