Abstract

The Probabilistic Satisfiability problem (PSAT) can be considered as a probabilistic counterpart of the classical SAT problem. In a PSAT instance, each clause in a CNF formula is assigned a probability of being true; the problem consists in checking the consistency of the assigned probabilities. Actually, PSAT turns out to be computationally much harder than SAT, e.g., it remains difficult for some classes of formulas where SAT can be solved in polynomial time. A i>column generation approach has been proposed in the literature, where the pricing sub-problem reduces to a Weighted Max-SAT problem on the original formula. Here we consider some easy cases of PSAT, where it is possible to give a compact representation of the set of consistent probability assignments. We follow two different approaches, based on two different representations of CNF formulas. First we consider a representation based on i>directed hypergraphs. By extending a well-known integer programming formulation of SAT and Max-SAT, we solve the case in which the hypergraph does not contain cycles; a linear time algorithm is provided for this case. Then we consider the co-occurrence graph associated with a formula. We provide a solution method for the case in which the co-occurrence graph is a partial 2-tree, and we show how to extend this result to partial i>k-trees with i>k>2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.