Abstract
A Bayes estimation procedure is introduced that allows the nature and strength of prior beliefs to be easily specified and modal posterior estimates to be obtained as easily as maximum likelihood estimates. The procedure is based on constructing posterior distributions that are formally identical to likelihoods, but are based on sampled data as well as artificial data reflecting prior information. Improvements in performance of modal Bayes procedures relative to maximum likelihood estimation are illustrated for Rasch-type models. Improvements range from modest to dramatic, depending on the model and the number of items being considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Psychometrika
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.