Abstract

Several graph matching and exact covering problems arising in VLSI low-power design optimization by clock gating are presented. To maximize the power savings, clock gating requires optimal grouping of Flip-Flops (FFs), which depends on FFs’ data toggling correlations and probabilities. These naturally lead to optimal matching and exact covering problems. We present three problems arising by different clock-gating techniques. In a method called data-driven clock-gating, the corresponding covering problem is intractable but can practically be solved by appropriate heuristics. In another method called multi-bit flip-flops, the covering problem is easily solvable in a closed-form, required only sorting. We finally present the covering problem arising in a new method called look-ahead clock-gating, for which the question of whether the exact covering problem is easy or difficult is left open.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.