Abstract

A simple method to modify the primary face of cyclodextrins (CDs) is described. The 6I-O-yl radical of α-, β-, and γ-CDs regioselectively abstracts the H5II, located in the adjacent D-glucose unit, by an intramolecular 1,8-hydrogen-atom-transfer reaction through a geometrically restricted nine-membered transition state to give a stable 1,3,5-trioxocane ring. The reaction has been extended to the 1,4-diols of α- and β-CD to give the corresponding bis(trioxocane)s. The C2-symmetric bis(trioxocane) corresponding to the α-CD is a stable crystalline solid whose structure was confirmed by X-ray diffraction analysis. The calculated geometric parameters confirm that the primary face is severely distorted toward a narrower elliptical shape for this rim.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.