Abstract

Copper catalysts are very promising, affordable alternatives for noble metals in CO oxidation; however, the nature of the active species remains unclear and differs throughout previous reports. Here, we report the preparation of 8 nm copper nanoparticles (Cu NPs), with high metallic content, directly deposited onto the surface of silica nanopowders by magnetron sputtering deposition. The as-prepared Cu/SiO2 contains 85% Cu0 and 15% Cu2+ and was enriched in the Cu0 phase by H2 soft pretreatment (96% Cu0 and 4% Cu2+) or further oxidized after treatment with O2 (33% Cu0 and 67% Cu2+). These catalysts were studied in the catalytic oxidation of CO under dry and humid conditions. Higher activity was observed for the sample previously reduced with H2, suggesting that the presence of Cu-metal species enhances CO oxidation performance. Inversely, a poorer performance was observed for the sample previously oxidized with O2. The presence of water vapor caused only a small increase in the temperature require for the reaction to reach 100% conversion. Under dry conditions, the Cu NP catalyst was able to maintain full conversion for up to 45 h at 350 °C, but it deactivated with time on stream in the presence of water vapor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.