Abstract

Stable genetic resistance to the fungal disease eastern filbert blight (EFB), caused by Anisogramma anomala, is vital for sustainable production of European hazelnut (Corylus avellana) in eastern North America. In this study, new hazelnut germplasm from the Russian Federation, Ukraine, and Poland (a total of 1844 trees from 66 seed lots) was subjected to A. anomala under field conditions over at least five years in New Jersey. Plants were then rated for the presence of EFB using an index of 0 (no disease) through 5 (all stems containing cankers). Nuts of the resistant trees were evaluated to identify plants with improved kernel characteristics. Genomic DNA of these trees was also screened with sequence-characterized amplified region (SCAR) markers generated by the primers BE-03, BE-33, and BE-68, which are closely linked to the single dominant R-gene of ‘Gasaway’, to assess the resistant seedlings for the presence of this well-known source of resistance. At final evaluation, 76 trees remained free of disease with nine expressing only minor symptoms (rating 1 or 2). The resistant trees spanned 24 different seed lots representing all three countries. The remaining trees ranged from moderately to severely infected with 81% of the total collection rating 5. Several of the resistant trees were found to produce commercial-sized (≈12 mm diameter), round kernels that blanched well. Although the results of the ‘Gasaway’ SCAR primers were inconclusive, the diverse collection origins and disease phenotypes provide evidence that novel sources of resistance were likely identified in this study. These new plants should broaden the genetic base of EFB-resistant C. avellana hazelnut germplasm available for breeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call