Abstract

Structured illumination microscopy (SIM) achieves super-resolution imaging using a series of phase-shifted sinusoidal illumination patterns to down-modulate high spatial-frequency information of samples. Digital micromirror devices (DMDs) have been increasingly used to generate SIM illumination patterns due to their high speed and moderate cost. However, a DMD micromirror array's blazed grating structure causes strong angular dispersion for different wavelengths of light, thus severely hampering its application in multicolor imaging. We developed a multi-color DMD-SIM setup that employs a diffraction grating to compensate the DMD's dispersion and demonstrate super-resolution SIM imaging of both fluorescent beads and live cells samples with four color channels. This simple but effective approach can be readily scaled to more color channels, thereby greatly expanding the application of SIM in the study of complex multi-component structures and dynamics in soft matter systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call