Abstract

A simple nonconstructive argument shows that most 3CNF formulas with cn clauses (where c is a large enough constant) are not satisfiable. It is an open question whether there is an efficient refutation algorithm that for most formulas with cn clauses proves that they are not satisfiable. We present a polynomial time algorithm that for most 3CNF formulas with cn 3/2 clauses (where c is a large enough constant) finds a subformula with O(c 2 n) clauses and then proves that this subformula is not satisfiable (and hence that the original formula is not satisfiable). Previously, it was only known how to efficiently certify the unsatisfiability of random 3CNF formulas with at least poly(log(n)) · n 3/2 clauses. Our algorithm is simple enough to run in practice. We present some preliminary experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.