Abstract

Ultrafine hierarchical TS-1 zeolite (<300nm) generally expresses eminent catalytic activity for liquid-phase alkene epoxidation, but encounters serious separation difficulties. Micron-sized silica-walled TS-1 colloidosomes, which were synthesized via an interfacial sol-gel method, can effectively resolve fine TS-1 zeolite separation problems. The interfacial sol-gel process involves construction of a stable W/O Pickering emulsion stabilized by fine TS-1 particles and alkali-catalyzed hydrolysis of silica precursor methyl-trimethoxysilane at the oil-water interface. The successful preparation of TS-1 colloidosome was verified by Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS). The prepared TS-1 colloidosome dimension is tailorable according to water-to-oil volume ratio (Rw/o) and ratio of TS-1 wt to oil volume (Rs/o). On the same time, X-ray diffraction patterns and UV–vis spectra disclosed that the interfacial sol-gel process had no effect on the MFI structure of hierarchical TS-1 particles. The catalytic results showed that the prepared TS-1 colloidosome was a very active and stable catalyst for liquid-phase alkene epoxidation reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.