Abstract

Twisting anthracene and higher acenes can alter their optical, magnetic, and electronic properties. To test the effect of twisting on the lower homologue, naphthalene, we synthesized tethered naphthalenophanes bearing alkyl bridges. Both X-ray structure and DFT calculations show that hexyl and butyl bridges induce a 6° and 12° end-to-end twist on the naphthalene unit, respectively. Attempts to increase the twisting further using shorter tethers resulted in an elimination product. Enantiomerically pure naphthalenophanes display strong chiroptical properties, which intensify with increasing twist. Attempts to induce bending, rather than twisting, using the same synthetic methodology, resulted in intermolecular dimerization, yielding macrocyclic naphthalenes. This work highlights the importance of steric hindrance in the synthesis of curved cyclophanes using the bridge formation approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.