Abstract

Globally distributed earthworms affect compositions of soil compounds, microbial community structures, as well as antibiotic resistance genes (ARGs). Compared to their surroundings, earthworm gut is a simpler environment which could filter out microbes when soil passes through it. However, little is known about how earthworms affect the dissemination of ARGs in soil, and the understanding of the relationship between microbe-microbe interactions and ARGs is still lacking. Here, we designed a microcosm experiment with earthworm addition, and determined bacterial and fungal community compositions based on amplicon sequencing. We also examined mobile genetic elements (MGEs) and ARGs in earthworm gut and soils using high-throughput qPCR. The results showed significant differences of bacterial, fungal and ARG patterns between gut and soil. Earthworms indirectly impacted the patterns of ARGs in soils by affecting bacterial communities and soil properties, which play key roles in the distribution of ARGs and MGEs. The absolute abundances of MGEs in earthworm gut were significantly lower than those in soils, and earthworms reduce the absolute abundance of MGEs in soils. Earthworms changed the microbial co-occurrence patterns, and reduced bacterial connectivity, which were significantly and positively correlated with MGE abundance. These results highlight the importance of earthworm on the distribution and dissemination of ARGs in soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call