Abstract

AbstractEarthquake source time functions carry information about the complexity of seismic rupture. We explore databases of earthquake source time functions and find that they are composed of distinct peaks that we call subevents. We observe that earthquake complexity, as represented by the number of subevents, grows with earthquake magnitude. Patterns in rupture complexity arise from a scaling between subevent moment and main event moment. These results can be explained by simple 2‐D dynamic rupture simulations with self‐affine heterogeneity in fault prestress. Applying this to early magnitude estimates, we show that the main event magnitude can be estimated after observing only the first few subevents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call