Abstract

A tuned liquid damper (TLD) is a passive vibration control device consisting of a rigid tank filled with water that relies on the sloshing of water inside it to dissipate energy. In a standard TLD configuration the TLD is connected rigidly to the top of the building structure. Earlier research has shown that the TLD is more effective when its base acceleration amplitude is larger, as it dissipates more energy through increased sloshing. This characteristic has been utilized to design this alternate TLD configuration. In this alternate TLD configuration, the TLD is rigidly attached to a secondary mass that is attached to the primary structure through a spring system. This alternate configuration is, thus, defined as a hybrid mass liquid damper (HMLD). For particular values of the secondary spring’s flexibility, the motion of the secondary structure is in phase with that of the primary structure and the TLD base is subjected to a large amplitude acceleration that increases its effectiveness. It should be noted that when the secondary spring is rigid, the alternate and standard TLD configurations are identical for very small values of the secondary mass. It is seen that, for a given structure with HMLD there exists an optimum value of the secondary spring’s stiffness for which the HMLD effectiveness is maximum. An optimally designed HMLD configuration is shown to be more effective as a control device than the standard TLD configuration for both harmonic and broad-band earthquake motions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.