Abstract
Earthquake response of solitary slender intake towers is investigated considering an idealized hollow intake tower with its circular footing submerged in water. The tower is studied in anchored (fixed base) and unanchored (freestanding) states placed on undeformable soil foundation. The water-structure interaction is modeled by the Eulerian-Lagrangian approach, using the pressure-based elements for the water and the displacement-based elements for the structure. The only source of nonlinearity is the contact at the base joint between the tower's footing and the ground. This contact is modeled using Coulomb friction model which allows the tower to slide and uplift. The system is three-dimensionally analyzed using finite element method under static and dynamic earthquake loads. A detailed parametric study is conducted to assess the importance of system characteristics including surrounding and inside water levels, ratio of tower height to footing radius, base joint friction coefficient, water compressibility, footing flexibility, and vertical ground motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.