Abstract

IntroductionIn recent years, several massive earthquakes have occurred across the globe. Multidetector computed tomography (MDCT) is reliable in detecting spinal injuries. The purpose of this study was to compare the features of spinal injuries resulting from the Sichuan earthquake with those of non-earthquake-related spinal trauma using MDCT.MethodsFeatures of spinal injuries of 223 Sichuan earthquake-exposed patients and 223 non-earthquake-related spinal injury patients were retrospectively compared using MDCT. The date of non-earthquake-related spinal injury patients was collected from 1 May 2009 to 22 July 2009 to avoid the confounding effects of seasonal activity and clothing. We focused on anatomic sites, injury types and neurologic deficits related to spinal injuries. Major injuries were classified according to the grid 3-3-3 scheme of the Magerl (AO) classification system.ResultsA total of 185 patients (82.96%) in the earthquake-exposed cohort experienced crush injuries. In the earthquake and control groups, 65 and 92 patients, respectively, had neurologic deficits. The anatomic distribution of these two cohorts was significantly different (P < 0.001). Cervical spinal injuries were more common in the control group (risk ratio (RR) = 2.12, P < 0.001), whereas lumbar spinal injuries were more common in the earthquake-related spinal injuries group (277 of 501 injured vertebrae; 55.29%). The major types of injuries were significantly different between these cohorts (P = 0.002). Magerl AO type A lesions composed most of the lesions seen in both of these cohorts. Type B lesions were more frequently seen in earthquake-related spinal injuries (RR = 1.27), while we observed type C lesions more frequently in subjects with non-earthquake-related spinal injuries (RR = 1.98, P = 0.0029).ConclusionsSpinal injuries sustained in the Sichuan earthquake were located mainly in the lumbar spine, with a peak prevalence of type A lesions and a high occurrence of neurologic deficits. The anatomic distribution and type of spinal injuries that varied between earthquake-related and non-earthquake-related spinal injury groups were perhaps due to the different mechanism of injury.

Highlights

  • In recent years, several massive earthquakes have occurred across the globe

  • Of the 2,728 patients with earthquake-related spinal injuries seen in our hospital, we consecutively enrolled patients into the exposed cohort according to the following criteria: (1) the etiology of the injuries was associated with the 2008 Sichuan earthquake, (2) spinal injuries were evaluated using Multidetector computed tomography (MDCT), and (3) the patients had not received related surgical treatment before the spinal MDCT scan

  • Our study revealed that the degree of spinal canal narrowing was higher in patients with neurologic deficits

Read more

Summary

Introduction

Multidetector computed tomography (MDCT) is reliable in detecting spinal injuries. The purpose of this study was to compare the features of spinal injuries resulting from the Sichuan earthquake with those of non-earthquake-related spinal trauma using MDCT. A retrospective study of the features of 223 patients with spinal injuries was performed using multidetector computed tomography (MDCT). This study relied on the 2,728 patients with earthquakerelated spinal injuries seen in a key university hospital [1]. The spinal injuries sustained by the 223 patients during the Sichuan earthquake usually occurred from crush injuries followed by falls. The features of earthquake-related spinal injuries have been studied [1], no one has reported the differences between earthquake-related and other spinal injuries. MDCT is a fast and reliable modality to determine the pattern and severity of spinal injuries and the degree of spinal instability [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.