Abstract
This paper investigates the earthquake performance of concrete gravity dams under spatially variable seismic excitations. A nonlinear finite element model is developed and validated using shake table experimental results. The model is then subjected to spatially varying earthquake ground motions incorporating the wave passage effect, with values for apparent propagation velocities consistent with the source-site geometry and the shear wave velocity in the foundation rock. The evaluation reveals that different response patterns occur when spatially non-uniform and uniform seismic ground motions are applied as input excitations to the model, because spatially non-uniform excitations induce the quasi-static response, whereas uniform excitations do not, and, in addition, the dynamic response caused by different input motions varies. Notably, spatially non-uniform excitations produce larger opening at the heel of the dam and severer slipping at its toe; this latter observation can have a significant effect on the global equilibrium and stability of the dam during an earthquake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.