Abstract

An accurate estimation of an earthquake magnitude plays an important role in targeting emergency services towards affected areas. Along with the traditional methods using seismometers, site displacements caused by an earthquake can be monitored by the Global Navigation Satellite Systems (GNSS). GNSS can be used either in real-time for early warning systems or in offline mode for precise monitoring of ground motion. The Precise Point Positioning (PPP) offers an optimal method for such purposes, because data from only one receiver are considered and thus not affected by other potentially not stable stations. Precise external products and empirical models have to be applied, and the initial convergence can be reduced or eliminated by the backward smoothing strategy or integer ambiguity resolution. The product for the magnitude estimation is a peak ground displacement (PGD). PGDs observed at many GNSS stations can be utilized for a robust estimate of an earthquake magnitude. We tested the accuracy of estimated magnitude scaling when using displacement waveforms collected from six selected earthquakes between the years 2016 and 2020 with magnitudes in a range of 7.5–8.2 Moment magnitude MW. We processed GNSS 1Hz and 5Hz data from 182 stations by the PPP method implemented in the G-Nut/Geb software. The precise satellites orbits and clocks corrections were provided by the Center for Orbit Determination in Europe (CODE). PGDs derived on individual GNSS sites formed the basis for ground motion parameters estimation. We processed the GNSS observations by the combination of the Kalman filter (FLT) and the backward smoother (SMT), which significantly enhanced the kinematic solution. The estimated magnitudes of all the included earthquakes were compared to the reference values released by the U. S. Geological Survey (USGS). The moment magnitude based on SMT was improved by 20% compared to the FLT-only solution. An average difference from the comparison was 0.07 MW and 0.09 MW for SMT and FLT solutions, respectively. The corresponding standard deviations were 0.18 MW and 0.22 MW for SMT and FLT solutions, which shows a good consistency of our and the reference estimates.

Highlights

  • Earthquakes with a moment magnitude MW greater than seven often cause extensive damage to buildings and loss of life

  • peak ground displacement (PGD) were extracted from time series of ENU coordinates

  • We used high-rate Global Navigation Satellite Systems (GNSS) data provided by University Navstar Consortium (UNAVCO) and New Zealand GeoNet from 6 selected earthquakes from the years 2016-2020

Read more

Summary

Introduction

Earthquakes with a moment magnitude MW greater than seven often cause extensive damage to buildings and loss of life. Large earthquakes can lead to other devastating phenomena such as tsunamis, landslides, and sometimes volcanic eruptions. Information on the magnitude of the earthquake is essential for evacuating people and protecting critical infrastructure. Knowledge of the extent of the damage is essential for the government in planning and managing assistance to the affected regions.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.