Abstract

Product sustainability has moved beyond being an elective preference to becoming a certain necessity. However, earthquakes in different regions, particularly Türkiye–Syria, Afghanistan, and Morocco, have produced a substantial amount of construction waste and debris. In the context of green urban initiatives and environmental preservation, theeffective management and reduction of environmental impact (EI) are imperative. This urgency underscores the significance of the study’s focus on a ten-story reinforced concrete (RC) dormitory building in Győr, Hungary, chosen as a case study. The research delves into the incorporation of three distinct concrete compositions through seismic design, aligning with the innovative approach of emphasizing recycled aggregate-based concrete to mitigate the EI. Utilizing AxisVM X7 and Revit software, the study meticulously created and analyzed a detailed building model, revealing a significant percentage (35%) and amount (1519.89 tons) of concrete waste that could be incorporated into construction. The results also showed a reduction in both total carbon emissions and the price of materials by falling 27.5% and 9.13%, respectively. We propose an eco-friendly way to effectively reuse debris from earthquakes, focusing on the case study of the 2023 Türkiye–Syria earthquake and encouraging resource efficiency while also addressing the construction waste problems that arise after an earthquake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call