Abstract

Subduction earthquakes on plate-boundary megathrusts accommodate most of the global seismic moment release, frequently resulting in devastating damage by ground shaking and tsunamis. As many earthquakes occur in deep-sea regions, the dynamics of earthquake faulting in subduction zones is poorly understood. However, the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) and fault rock studies in accretionary prisms exhumed from source depths of subduction earthquakes have greatly improved our understanding of earthquake faulting in subduction zones. Here, we review key advances that have been made over the last decade in the studies of fault rocks and in laboratory experiments using fault zone materials, with a particular focus on the Nankai Trough subduction zone and its on-land analog, the Shimanto accretionary complex in Japan. New insights into earthquake faulting in subduction zones are summarized in terms of the following: (1) the occurrence of seismic slip along velocity-strengthening materials both at shallow and deep depths; (2) dynamic weakening of faults by melt lubrication and fluidization, and possible factors controlling coseismic deformation mechanisms; (3) fluid-rock interactions and mineralogical and geochemical changes during earthquakes; and (4) geological and experimental aspects of slow earthquakes.

Highlights

  • Great subduction earthquakes (Mw > 8.0) commonly occur along plate-boundary thrusts beneath accretionary prisms

  • The results show that tremor and swarms of acoustic emission (AE) were generated when the expulsion of water occurred from the dehydration of serpentinite

  • Studies of the physical and chemical processes that occur during subduction earthquakes remain in their infancy

Read more

Summary

Introduction

Great subduction earthquakes (Mw > 8.0) commonly occur along plate-boundary thrusts beneath accretionary prisms. High-velocity friction experiments on the plate-boundary thrust material suggest that the large coseismic slip can be explained by a very low coseismic shear stress, which can be attributed to both the abundance of smectite in the pelagic clay and thermal pressurization effects (Ujiie et al 2013).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call