Abstract

We investigate the effect of extended faulting processes and heterogeneous wave propagation on the early warning system capability to predict the peak ground velocity (PGV) from moderate to large earthquakes occurring in the southern Apennines (Italy). Simulated time histories at the early warning network have been used to retrieve early estimates of source parameters and to predict the PGV, following an evolutionary, probabilistic approach. The system performance is measured through the Effective Lead‐Time (ELT), i.e., the time interval between the arrival of the first S‐wave and the time at which the probability to observe the true PGV value within one standard deviation becomes stationary, and the Probability of Prediction Error (PPE), which provides a measure of PGV prediction error. The regional maps of ELT and PPE show a significant variability around the fault up to large distances, thus indicating that the system's capability to accurately predict the observed peak ground motion strongly depends on distance and azimuth from the fault.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.