Abstract

The generation of hydrogen through the electrolysis of water has attracted attention as a promising way to produce and store energy using renewable energy sources. In this process, a catalyst is very important to achieve a high-energy conversion efficiency for the electrolysis of water. A good catalyst for water electrolysis should exhibit high catalytic activity, good stability, low cost and good scalability. Much research has been devoted to developing efficient catalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Traditionally, it has been accepted that a material with high crystallinity is important to serve as a good catalyst for HER and/or OER. Recently, catalysts for HER and/or OER in the electrolysis of water splitting based on amorphous materials have received much interest in the scientific community owing to the abundant unsaturated active sites on the amorphous surface, which form catalytic centers for the reaction of the electrolysis of water. We summarize the recent advances of amorphous catalysts for HER, OER and overall water splitting by electrolysis and the related fundamental chemical reactions involved in the electrolysis of water. The current challenges confronting the electrolysis of water and the development of more efficient amorphous catalysts are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call