Abstract

Earth rotation and polar motion studies are embarking on a new era with the advent of highly accurate space geodetic techniques and the availability of global atmospheric angular momentum measurements. Space geodesy is opening new doors, answering old questions, and posing new ones. The angular momentum balance and the transfer of angular momentum between the solid Earth, atmosphere, and oceans are emerging as a problem of great scientific interest overlapping many areas, such as atmospheric science, oceanography, geodesy, and geodynamics. Here, the measurements of Earth rotation and polar motion (collectively referred to as Earth orientation) are described; the combination, smoothing, and intercomparison of these results from various techniques are presented. The calculation of atmospheric angular momentum (AAM) excitation functions are outlined; comparisons of the AAM excitation functions with variations in the length of day (LOD) and polar motion results are discussed. The associated geophysical implications (e.g., J2, 50-day oscillations) are stressed; anticipated advances and prospects for the future are high lighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.