Abstract

We are all becoming more aware of concerns such as the ozone hole and ozone layer depletion, the build-up of greenhouse gasses and the potential for global climate change, the damage to our lakes and forests from acid rain, and the loss of species and genetic diversity. These are not only of scientific interest, but are of growing public media, federal governmental, and international concern, with the potential for major impacts on the international economy, potential for future development, and global standard of living. Yet our current understanding of how our global environment behaves is embryonic, and does not allow us to predict with confidence the consequences or long term significance of these phenomena. NASA has a significant national responsibility in Global Change research, which will require a major agency investment over the next few decades in obtaining the science data associated with understanding the Earth as a total system. Technology research and development is a natural complement to this national scientific program. In her report to the NASA Administrator, Dr. Sally K. Ride states that Mission to Planet Earth “requires advances in technology to enhance observations, to handle and deliver the enormous quantities of data, and to ensure a long operating life.” These three themes (1) space-based observation technologies, (2) data/information technologies, and (3) spacecraft/operations technologies form the basis for NASA's efforts to identify the technologies needed to support the Mission to Planet Earth. In the observation area, developments in spacecraft and space-based instrument technologies are required to enable the accurate measurement of key parameters crucial to the understanding of global change. In the data/information area, developments in technologies are required to enable the long-term documentation of these parameters and the timely understanding of the data. And in the spacecraft/operations area, developments in spacecraft, platform, and operations technologies are required to enable consistent long-term collection of data through increased system reliability and operations effectiveness. Development of automation technologies for ground-based planning and operations systems would enable more flexible spacecraft and inter-spacecraft operations. This paper summarizes the effort to identify these technology requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call