Abstract

Earth Mover's Distance (EMD), as a similarity measure, has received a lot of attention in the fields of multimedia and probabilistic databases, computer vision, image retrieval, machine learning, etc. EMD on multidimensional histograms provides better distinguishability between the objects approximated by the histograms (e.g., images), compared to classic measures like Euclidean distance. Despite its usefulness, EMD has a high computational cost; therefore, a number of effective filtering methods have been proposed, to reduce the pairs of histograms for which the exact EMD has to be computed, during similarity search. Still, EMD calculations in the refinement step remain the bottleneck of the whole similarity search process. In this paper, we focus on optimizing the refinement phase of EMD-based similarity search by (i) adapting an efficient min-cost flow algorithm (SIA) for EMD computation, (ii) proposing a dynamic distance bound, which can be used to terminate an EMD refinement early, and (iii) proposing a dynamic refinement order for the candidates which, paired with a concurrent EMD refinement strategy, reduces the amount of needless computations. Our proposed techniques are orthogonal to and can be easily integrated with the state-of-the-art filtering techniques, reducing the cost of EMD-based similarity queries by orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call