Abstract

<p>Since launch in November 2013, the Swarm constellation of three satellites provides detailed measurements of the magnetic field of the Earth. To ensure the high accuracy of magnetic vector observation by Vector Field Magnetometer (VFM), the Swarm inertial attitude is determined by the micro Advanced Stellar Compass (μASC). Besides its primary function of attitude determination, the µASC is also capable of detecting particles with energies high enough to penetrate its camera shielding, where particles passing the focal plane CCD detector leave detectable ionization tracks. The typical shielding employed requires the minimum energy to penetrate >15MeV for electrons, > 80MeV for protons and >~GeV for heavier elements.</p><p>The signature of passing particle will only persist in one frame time, but the signature differs between electrons and protons. To ensure full attitude performance operations even during the most intense CMEs, the signatures are removed before star tracking. By counting the signatures, and using a model for the flux transport through the shielding, an accurate measure of the instantaneous high energy particle flux is achieved at each update cycle (250ms).</p><p>With this feature installed on all three Swarm spacecrafts, a hitherto unprecedented accurate mapping of the proton population around Earth is achieved at two distances, 450 and 530km.</p><p>The superrelativistic protons measured by the μASC (g>>1), travel at speeds very close to c, and bouncing between the North and South Earth sphere, encounters complex field structures for at least some of the time. The bounce period is much smaller than the Earth rotation period, and an east-west drift component is caused by the magnetic field gradient.</p><p>We will present observations of the trapped proton fluxes and show how the magnetic field affects their motion shells. Slightly deformed particle drift shells due to the magnetic field structure (for orbits with L>1.07) and the differential east-west drift as measured by the Swarm Alpha and Charlie satellites will be discussed.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.