Abstract

Earth is the largest of the four terrestrial planets, three of which have substantial atmospheres. The astronomical and orbital parameters are summarized in table 9.1. Our planet has an obliquity of 23.5°, giving rise to well-known seasonal variations in solar insolation. The orbital elements are slightly perturbed by other planets in the solar system (primarily Jupiter), with time scales from 20 to 100 kyr, and these changes are believed to cause the advance and retreat of ice sheets. The last glacial maximum (LGM) occurred 18 kyr ago, at which time the planet was colder by several degrees centigrade on average. At present Earth is in an interglacial warm period. The origin of Earth may not be very different from that of the other terrestrial bodies. However, three properties may be unique to this planet. One is the formation of the Moon, probably via collision between Earth and a Mars-sized body. Second is the release of a huge amount of water from the interior (see discussion in section 8.5). Third, Earth is endowed with a large magnetic field that protects it from direct impact by the solar wind. Seventy percent of Earth's surface is covered by oceans, which have a mean depth of 3 km. There is so much water that Arthur C. Clarke proposed that "Ocean" might be a better name for our planet than "Earth." The enormous body of water became the cradle of life as early as 3.85 Gyr ago. The present terrestrial environment is the end-product of billions of years of evolution driven by the hydrological cycle and global biogeochemical cycles, in addition to the slower forces of geodynamics and geochemistry. The massive hydrological cycle and the biogeochemical cycles that operate on Earth are absent from other planets in the solar system. Mars in the remote past might have had a milder climate with liquid water on the surface, but the planet dried up a few eons ago. There is to date no observational evidence for the hypothetical oceans (composed of liquid hydrocarbons) on Titan. Life on a planetary scale equivalent to the terrestrial biosphere does not exist elsewhere in the solar system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call