Abstract

Cu2SnS3 (CTS) is starting to gain interest in the PV research community as an alternative earth abundant absorber for thin film photovoltaics. In this work, the structure, morphology and the composition of the CTS absorbers as well as their influence on the optoelectronic properties of the solar cells are analysed. The synthesis of Cu-Sn-S thin films by co-evaporation at a nominal temperature of 400 °C is presented. A combination of X-ray diffraction, Raman and UV-Vis spectroscopy suggests that the Cu2SnS3 is crystallising in a cubic structure with disorder in the Cu and Sn sites, leading to substantial band tailing.The best device was fabricated from absorbers exhibiting a Cu/Sn ratio of approximately 1.7 and had an efficiency of 1.8%, a short circuit current of 28 mA cm−2, and an open circuit voltage of 147 mV with a fill factor of 42.9%. From the quantum efficiency measurement, we estimate a band gap of 1.06 eV for the CTS absorber material. Capacitance-voltage measurements show charge carrier concentrations between 4 and 6 × 1016 cm−3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.