Abstract

Earning limits are an interesting novel aspect in the classic Fisher market model. Here sellers have bounds on their income and can decide to lower the supply they bring to the market if income exceeds the limit. Beyond several applications, in which earning limits are natural, equilibria of such markets are a central concept in the allocation of indivisible items to maximize Nash social welfare. In this paper, we analyze earning limits in Fisher markets with linear and spending-constraint utilities. We show a variety of structural and computational results about market equilibria. The equilibrium price vectors form a lattice, and the spending of buyers is unique in non-degenerate markets. We provide a scaling-based algorithm that computes an equilibrium in time $$O(n^3\ell \log (\ell + nU))$$, where n is the number of agents, $$\ell \ge n$$ a bound on the segments in the utility functions, and U the largest integer in the market representation. Moreover, we show how to refine any equilibrium in polynomial time to one with minimal prices, or one with maximal prices (if it exists). Finally, we discuss how our algorithm can be used to obtain in polynomial time a 2-approximation for Nash social welfare in multi-unit markets with indivisible items that come in multiple copies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.