Abstract
In avian species, the number of chicks in the nest and subsequent sibling competition for food are major components of the offspring's early-life environment. A large brood size is known to affect chick's growth, leading in some cases to long-lasting effects for the offspring, such as a decrease in size at fledgling and in survival after fledging. An important pathway underlying different growth patterns could be the variation in offspring mitochondrial metabolism through its central role in converting energy. Here, we performed a brood size manipulation in great tits (Parus major) to unravel its impact on offspring's mitochondrial metabolism and reactive oxygen species (ROS) production in red blood cells. We investigated the effects of brood size on chicks' growth and survival, and tested for long-lasting effects on juvenile mitochondrial metabolism and phenotype. As expected, chicks raised in reduced broods had a higher body mass compared to enlarged and control groups. However, mitochondrial metabolism and ROS production were not significantly affected by the treatment either at chick or juvenile stages. Interestingly, chicks raised in very small broods were smaller in size and had higher mitochondrial metabolic rates. The nest of rearing had a significant effect on nestling mitochondrial metabolism. The contribution of the rearing environment in determining offspring mitochondrial metabolism emphasizes the plasticity of mitochondrial metabolism in regards to the nest environment. This study opens new avenues regarding the implication of postnatal environmental conditions in shaping the offspring's early-life mitochondrial metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.