Abstract

Neurogenesis in the subependymal zone (SEZ) declines across the human lifespan, and reduced local neurotrophic support is speculated to be a contributing factor. While tyrosine receptor kinase B (TrkB) signalling is critical for neuronal differentiation, maturation and survival, little is known about subependymal TrkB expression changes during postnatal human life. In this study, we used quantitative PCR and insitu hybridisation to determine expression of the cell proliferation marker Ki67, the immature neuron marker doublecortin (DCX) and both full-length (TrkB-TK+) and truncated TrkB receptors (TrkB-TK-) in the human SEZ from infancy to middle age (n=26-35, 41days to 43years). We further measured TrkB-TK+ and TrkB-TK- mRNAs in the SEZ from young adulthood into ageing (n=50, 21-103years), and related their transcript levels to neurogenic and glial cell markers. Ki67, DCX and both TrkB splice variant mRNAs significantly decreased in the SEZ from infancy to middle age. In contrast, TrkB-TK- mRNA increased in the SEZ from young adulthood into ageing, whereas TrkB-TK+ mRNA remained stable. TrkB-TK- mRNA positively correlated with expression of neural precursor (glial fibrillary acidic protein delta and achaete-scute homolog 1) and glial cell markers (vimentin and pan glial fibrillary acidic protein). TrkB-TK+ mRNA positively correlated with expression of neuronal cell markers (DCX and tubulin beta 3 class III). Our results indicate that cells residing in the human SEZ maintain their responsiveness to neurotrophins; however, this capability may change across postnatal life. We suggest that TrkB splice variants may differentially influence neuronal and glial differentiation in the human SEZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.