Abstract

This study is focused on the behaviour of concrete at early-age in massive structures, in relation with the prediction of both cracking risk and residual stresses, which is still a challenging task. In this paper, a 3D thermo-chemo-mechanical model has been developed, on the basis of complete material characterization experiments, in order to predict the early-age development of strains and residual stresses, and in order to assess the risk of cracking in massive concrete structures. The parameters of the proposed model were identified on two different concretes, High Performance Concrete and Fibrous Self-Compacted Concrete – from simple experiments in the laboratory: uniaxial tension and compression tests, dynamic Young's modulus measurements, free and autogenous shrinkages, semi-adiabatic calorimetry. The proposed model has been implemented in a Finite Element code, and the numerical simulations of the laboratory tests have proved the model consistency. Furthermore, early-age experiments conducted on massive structures have also been simulated, in order to investigate the predictive capability of the model, and to assess the model performance in practical situations where varying temperatures are involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.