Abstract

Since the 80's, studies have shown that Au is mobile in supergene lateritic surficial conditions. They are based either on petrological, thermodynamic studies, or experimental works. In contrast, few studies have been done on the mobility of the Pt group elements (PGE). Moreover, at the present time, no study has addressed the differential mobility of Au, Ag and Pd from natural alloys in the supergene environment. The aim of this study is to understand the supergene behavior, in lateritic conditions, of Au–Ag–Pd alloys of the Au ore locally called Jacutinga at the Maquiné Mine, Iron Quadrangle, Minas Gerais state, Brazil. The field work shows that the host rock is a “Lake Superior type” banded iron formation (BIF) and that the Au mineralization originates from sulfide-barren hydrothermal processes. Primary Ag–Pd-bearing Au has developed as xenomorphous particles between hematite and quartz grains. The petrological study indicates that the most weathered primary Au particles with rounded shapes and pitted surfaces were found, under the duricrust, within the upper friable saprolite. This layer, however is not the most weathered part of the lateritic mantle, but it is where the quartz dissolution resulting porosity is the most developed. The distribution of Au contents in the weathered rocks are controlled by the initial hydrothermal primary pattern. No physical dispersion has been found. Most of the particles are residual and very weakly weathered. This characterizes early stages of Au particle weathering in agreement with the relatively low weathering gradient of the host itabiritic formations that leads essentially to the development of isostructural saprolite lateritic mantle. Limited dissolution of primary Au particles issued from the friable saprolite induces Pd–Ag depleted rims compared to primary Au particle Pd–Ag contents.In addition, limited very short distance in situ dissolution/reprecipitation processes have been found at depth within the primary mineralization, as illustrated by tiny supergene, almost pure, Au particles. The supergene mobility order Pd>Ag>Au as reflecting early weathering stages of Au–Ag–Pd alloys under lateritic conditions is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.