Abstract

<p>Tipping points in the Earth System could present challenges for society and ecosystems. The existence of tipping points also provides a major challenge for science, as the global warming thresholds at which they are triggered is highly uncertain. A theory of `Early Warning Signals' has been developed to <br>warn of approaching tipping points. Although this theory uses generic features of a system approaching a Tipping Point, the conventional application of it relies on an implicit assumption that the system experiences white noise forcing. In the Earth system, this assumption is frequently invalid.<br>Here, we extend the theory of early warning signals to a system additively forced by an autocorrelated process. We do this by considering the spectral properties of both the system and also of the forcing.  We test our method on a simple dynamical system, before applying our method to a particular example from the Earth System: Amazon rainforest dieback. Using our new approach, we successfully forewarn of modelled rainforest collapse in a state-of-the-art CMIP6 Earth System Model.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call