Abstract

In order to overcome the limitation that rock mass instability warnings are caused by a lack of deep consideration of the inherent mechanism of disaster formation, early warning signs of rock mass instability were detected and multi-field coupling was analyzed. A multi-field coupling model of a damaged rock mass was established. The relationship between microseismic activity parameters and rock mass stability was analyzed, and a multi-parameter early warning index system was established and its solution program was compiled. Based on the D−S data fusion theory, an early warning model of rock mass instability combining multi-field coupling analysis and microseismic monitoring was constructed. Taking an underground mine stope as an object, the multi-field coupling model and its solution program were used to analyze mining response characteristics. The seismic field data were used to verify the accuracy of the multi-field coupling analysis. The early warning model was used to predict the instability of stope rock mass, and the early warning result is consistent with a real-world scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call