Abstract

Wastewater surveillance has rapidly emerged as an early warning tool to track COVID-19. However, the early warning measurement of new SARS-CoV-2 variants of concern (VOCs) in wastewaters remains a major challenge. We herein report a rapid analytical strategy for quantitative measurement of VOCs, which couples nested polymerase chain reaction and liquid chromatography–mass spectrometry (nPCR-LC-MS). This method showed a greater selectivity than the current allele-specific quantitative PCR (AS-qPCR) for tracking new VOC and allowed the detection of multiple signature mutations in a single measurement. By measuring the Omicron variant in wastewaters across nine Ontario wastewater treatment plants serving over a three million population, the nPCR-LC-MS method demonstrated a better quantification accuracy than next-generation sequencing (NGS), particularly at the early stage of community spreading of Omicron. This work addresses a major challenge for current SARS-CoV-2 wastewater surveillance by rapidly and accurately measuring VOCs in wastewaters for early warning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call