Abstract

Recent studies have demonstrated that generic statistical signals derived from time series of population abundance and fitness-related traits of individuals can provide reliable indicators of impending shifts in population dynamics. However, how the seasonal timing of environmental stressors influences these early warning indicators is not well understood. The goal of this study was to experimentally assess whether the timing of stressors influences the production, detection and sensitivity of abundance- and trait-based early warning indicators derived from declining populations. In a multi-generation, season-specific habitat loss experiment, we exposed replicate populations of Drosophila melanogaster to one of two rates of chronic habitat loss (10% or 20% per generation) in either the breeding or the non-breeding period. We counted population abundance at the beginning of each season, and measured body mass and activity levels in a sample of individuals at the end of each generation. When habitat was lost during the breeding period, declining populations produced signals consistent with those documented in previous studies. Inclusion of trait-based indicators generally improved the detection of impending population collapse. However, when habitat was lost during the non-breeding period, the predictive capacity of these indicators was comparatively diminished. Our results have important implications for interpreting signals in the wild because they suggest that the production and detection of early warning indicators depends on the season in which stressors occur, and that this is likely related to the capacity of populations to respond numerically the following season.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.