Abstract

In a dynamic, uncertain environment, increased supply chain resilience can improve business quality. Predicting changes in enterprise supply chain resilience can help enterprises adjust their operational strategy timeously and reduce the risk of supply and demand interruption. First, a comprehensive resilience assessment framework for manufacturing enterprises was constructed from the perspective of the supply chain, and an improved technique for order of preference by similarity to the ideal solution (TOPSIS) method was used to quantify the resilience level. Considering that the resilience index is easily affected by uncertain factors, and this produces large fluctuations, the buffer operator and metabolism idea are introduced to improve the grey prediction model. This improvement can realize dynamic tracking of the enterprise resilience index and evaluate changes in the enterprise resilience level. Finally, through the analysis of the supply chain data of a famous electronic manufacturing enterprise in China over a two-and-a-half-year period, the results show that the improved TOPSIS method and the improved grey prediction model are effective in improving the supply chain resilience of manufacturing enterprises. This study provides a reference method for manufacturing enterprises to improve their supply chain resilience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.